16 resultados para Achilles tendon, tendinopathy, eccentric exercise, rehabilitation, treatment, diametral strain, morphology, tendon thickness, ultrasound, sonography, echogenicity, time-dependent conditioning, walking, electromyography, ground reaction force

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Eccentric exercises (EEs) are recommended for the treatment of Achilles tendinopathy, but the clinical effect from EE has a slow onset. Hypothesis: The addition of low-level laser therapy (LLLT) to EE may cause more rapid clinical improvement. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: A total of 52 recreational athletes with chronic Achilles tendinopathy symptoms were randomized to groups receiving either EE + LLLT or EE + placebo LLLT over 8 weeks in a blinded manner. Low-level laser therapy (lambda = 820 nm) was administered in 12 sessions by irradiating 6 points along the Achilles tendon with a power density of 60 mW/cm(2) and a total dose of 5.4 J per session. Results: The results of the intention-to-treat analysis for the primary outcome, pain intensity during physical activity on the 100-mm visual analog scale, were significantly lower in the LLLT group than in the placebo LLLT group, with 53.6 mm versus 71.5 mm (P = .0003) at 4 weeks, 37.3 mm versus 62.8 mm (P = .0002) at 8 weeks, and 33.0 mm versus 53.0 mm (P =.007) at 12 weeks after randomization. Secondary outcomes of morning stiffness, active dorsiflexion, palpation tenderness, and crepitation showed the same pattern in favor of the LLLT group. Conclusion: Low-level laser therapy, with the parameters used in this study, accelerates clinical recovery from chronic Achilles tendinopathy when added to an EE regimen. For the LLLT group, the results at 4 weeks were similar to the placebo LLLT group results after 12 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized crossover double-blinded placebo-controlled trial. OBJECTIVE: To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. BACKGROUND: Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. METHODS: Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; A = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. RESULTS: Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (P<.01), creatine kinase activity (P = .017), and C-reactive protein levels (P = .047), showing a faster recovery with LLLT application prior to the exercise. CONCLUSION: We conclude that pre-exercise irradiation of the biceps with an LLLT dose of 6 J per application location, applied in 2 locations, increased endurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactive protein. LEVEL OF EVIDENCE: Performance enhancement, level 1b. J Orthop Sports Phys Ther 2010;40(8):524-532. doi:10.2519/jospt.2010.3294

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5A degrees C of temperature [SD +/- 1A degrees]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations Of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concert I rations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging leads to changes in cardiac structure and function. Evidence suggests that the practice of regular exercise may prevent disturbances in the cardiovascular system during aging. We studied the effects of aging on the morphology and morphometry of cardiac neurons in Wistar rats and investigated whether a lifelong moderate exercise program could exert a protective effect toward some deleterious effects of aging. Aging caused a significant decline (28%) in the number of NADH-diaphorase-stained cardiac Animals submitted to a daily session of 60 min, 5 day/week, at 1.1 km/h of running in treadmill over the entire life span exhibited a reversion of the observed decline in the number of cardiac neurons. However, most interesting was that the introduction of this lifelong exercise protocol dramatically altered the sizes of cardiac neurons. There was a notable increase in the percentage of small neurons in the rats of the exercise group compared to the sedentary animals. This is the first time that a protective effect of lifelong regular aerobic exercise has been demonstrated on the deleterious effects of aging in cardiac neurons. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacurau AV, Jardim MA, Ferreira JC, Bechara LR, Bueno CR Jr, Alba-Loureiro TC, Negrao CE, Casarini DE, Curi R, Ramires PR, Moriscot AS, Brum PC. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106: 1631-1640, 2009. First published January 29, 2009; doi:10.1152/japplphysiol.91067.2008.-Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA -> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The effect of creatine supplementation upon plasma levels of pro-inflammatory cytokines: Interleukin (IL) 1 beta and IL-6, Tumor Necrosis Factor alpha (TNF alpha), and Interferon alpha (INF alpha) and Prostaglandin E(2) (PGE(2)) after a half-ironman competition were investigated. Methods. Eleven triathletes, each with at least three years experience of participation in this sport were randomly divided between the control and experimental groups. During 5 days prior to competition, the control group (n = 6) was supplemented with carbohydrate (20g center dot d(-1)) whereas the experimental group (n = 5) received creatine (20 center dot d(-1)) in a double-blind trial. Blood samples were collected 48h before and 24 and 48h after competition and were used for the measurement of cytokines and PGE(2). Results. Forty-eight hours prior to competition there was no difference between groups in the plasma concentrations (pg center dot ml(-1), mean +/- SEM) of IL-6 (7.08 +/- 0.63), TNF alpha (76.50 +/- 5.60), INF alpha (18.32 +/- 1.20), IL-1 beta (23.42 +/- 5.52), and PGE(2) (39.71 +/- 3.8). Twenty-four and 48h after competition plasma levels of TNF alpha, INF alpha, IL-1 beta and PGE(2) were significantly increased (P < 0.05) in both groups. However, the increases in these were markedly reduced following creatine supplementation. An increase in plasma IL-6 was observed only after 24h and, in this case, there was no difference between the two groups. Conclusion. Creatine supplementation before a long distance triathlon competition may reduce the inflammatory response induced by this form of strenuous of exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, cholesterol oxide formation and alteration of fatty acid composition were analyzed in n-3 enriched eggs under different storage periods and two temperatures. The eggs enriched with n-3 fatty acids were stored at 5 or 25 degrees C for 45 days and subsequently boiled or fried. For each treatment, 12 yolks were analyzed every 15 days including time zero. The concentrations of the cholesterol oxides 7-ketocholesterol, 7 beta-hydroxycholesterol, and 7 alpha-hydroxycholesterol increased during the storage period and were higher in fried eggs. Only the 7-ketocholesterol was affected by the storage temperature, and its concentration was highest in eggs stored at 25 degrees C. There was no significant difference in the contents of cholesterol and vitamin E at the different storage periods; however, the concentration of vitamin E decreased with thermal treatment. In addition, the n-3 polyunsaturated fatty acids, especially 18:3, 20:5, and 22:6, were reduced throughout the storage at 5 and 25 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that melatonin influences the development of alpha 8 nicotinic acetylcholine receptor (nAChR) by measurement of the acetylcholine-induced increase in the extracellular acidification rate (ECAR) in chick retinal cell cultures. Cellular differentiation that takes place between DIV (days in vitro) 4 and DIV 5 yields cells expressing alpha 8 nAChR and results in a significant increase in the ECAR acetylcholine-induced. Blocking melatonin receptors with luzindole for 48 h suppresses the development of functional alpha 8 nAChR. Here we investigated the time window for the effect of melatonin on retinal cell development in culture, and whether this effect was dependent on an increase in the expression of alpha 8 nAChR. First, we confirmed that luzindole was inhibiting the effects of endogenous melatonin, since it increases 2-[(125)I] iodomelatonin (23 pM) binding sites density in a time-dependent manner. Then we observed that acute (15, 60 min, or 12 h) luzindole treatment did not impair acetylcholine-induced increase in the ECAR mediated by activation of alpha 8 nAChR at DIV 5, while chronic treatment (from DIV 3 or DIV 4 till DIV 5, or DIV 3.5 till DIV 4.5) led to a time-dependent reduction of the increase in the acetylcholine-induced ECAR. The binding parameters for [(125)I]-alpha-bungarotoxin (10 nM) sites in membrane were unaffected by melatonin suppression that started at DIV 3. Thus, melatonin surges in the time window that occurs at the final stages of chick retinal cell differentiation in culture is essential for development of the cells expressing alpha 8 nAChR subtype in full functional form. (C) 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporomandibular disorders represent one of the major challenges in dentistry therapeutics. This study was undertaken to evaluate the time course of carrageenan-induced inflammation in the rat temporomandibular joint (TMJ) and to investigate the role of tachykinin NK(1) receptors. Inflammation was induced by a single intra-articular (i.art.) injection of carrageenan into the left TMJ (control group received sterile saline). Inflammatory parameters such as plasma extravasation, leukocyte influx and mechanical allodynia (measured as the head-withdrawal force threshold) and TNF alpha and IL-1 beta concentrations were measured in the TMJ lavages at selected time-points. The carrageenan-induced responses were also evaluated after treatment with the NK(1) receptor antagonist SR140333. The i.art. injection of carrageenan into the TMJ caused a time-dependent plasma extravasation associated with mechanical allodynia, and a marked neutrophil accumulation between 4 and 24 h. Treatment with SR140333 substantially inhibited the increase in plasma extravasation and leukocyte influx at 4 and 24 h, as well as the production of TNF alpha and IL-1 beta into the joint cavity, but failed to affect changes in head-withdrawal threshold. The results obtained from the present TMJ-arthritis model provide, for the first time, information regarding the time course of this experimental inflammatory process. In addition, our data show that peripheral NK(1) receptors mediate the production of both TNF alpha and IL-1 beta in the TMJ as well as some of the inflammatory signs, such as plasma extravasation and leukocyte influx, but not the nociceptive component. 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthracyclines have been widely used as antitumor agents, playing a crucial role in the successful treatment of many types of cancer, despite some side effects related to cardiotoxicity. New anthracyclines have been designed and tested, but the first ones discovered, doxorubicin and daunorubicin, continue to be the drugs of choice. Despite their extensive use in chemotherapy, little is known about the DNA repair mechanisms involved in the removal of lesions caused by anthracyclines. The anthracycline cosmomycin D is the main product isolated from Streptomyces olindensis, characterized by a peculiar pattern of glycosylation with two trisaccharide rings attached to the A ring of the tetrahydrotetracene. We assessed the induction of apoptosis (Sub-G(1)) by cosmomycin D in nucleotide excision repair-deficient fibroblasts (XP-A and XP-C) as well as the levels of DNA damage (alkaline comet assay). Treatment of XP-A and XP-C cells with cosmomycin D resulted in apoptosis in a time-dependent manner, with highest apoptosis levels observed 96 h after treatment. The effects of cosmomycin D were equivalent to those obtained with doxorubicin. The broad caspase inhibitor Z-VAD-FMK strongly inhibited apoptosis in these cells, and DNA damage induced by cosmomycin D was confirmed by alkaline comet assay. Cosmomycin D induced time-dependent apoptosis in nucleotide excision repair-deficient fibroblasts. Despite similar apoptosis levels, cosmomycin D caused considerably lower levels of DNA damage compared to doxorubicin. This may be related to differences in structure between cosmomycin D and doxorubicin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetra-methyl-1-piperidinyloxy) and related nitroxides as antioxidants, their effects on peroxidase-mediated protein tyrosine nitration remain unexplored. This posttranslational protein modification is a biomarker of nitric oxide-derived oxidants, and, relevantly, it parallels tissue injury in animal models of inflammation and is attenuated by tempol treatment. Here, we examine tempol effects on ribonuclease (RNase) nitration mediated by myeloperoxidase (MPO), a mammalian enzyme that plays a central role in various inflammatory processes.. Some experiments were also performed with horseradish peroxidase (HRP). We show that tempol efficiently inhibits peroxidase-mediated RNase nitration. For instance, 10 mu M tempol was able to inhibit by 90% the yield of 290 mu M 3-nitrotyrosine produced from 370 mu M RNase. The effect of tempol was not completely catalytic because part of it was consumed by recombination with RNase-tyrosyl radicals. The second-order rate constant of the reaction of tempol with MPO compound I and 11 were determined by stopped-flow kinetics as 3.3 x 10(6) and 2.6 x 10(4) M-1 s(-1), respectively (pH 7.4, 25 degrees C); the corresponding HRP constants were orders of magnitude smaller. Time-dependent hydrogen peroxide and nitrite consumption and oxygen production in the incubations were quantified experimentally and modeled by kinetic simulations. The results indicate that tempol inhibits peroxidase-mediated RNase nitration mainly because of its reaction with nitrogen dioxide to produce the oxammonium cation, which, in turn, recycles back to tempol by reacting with hydrogen peroxide and superoxide radical to produce oxygen and regenerate nitrite. The implications for nitroxide antioxidant mechanisms are discussed.